Diagnostic plots

  1. Import results of an NLME run into xpose database to create commonly used diagnostic plots.

  2.   xp <- xposeNlme (dir = model@modelInfo@workingDir , modelName =
             ModelName )

  3. Observations against population or individual predictions

  4.   dv_vs_pred (xp , type = "p", subtitle = " -2LL: @ofv ")
      dv_vs_ipred (xp , type = "p", subtitle = " -2LL: @ofv , Eps shrinkage
         : @epsshk ")

    Vignette_RsNLME_TwoCmptObsvsPopIndPred.png 

  5. CWRES against independent variable or population predictions

  res_vs_idv (xp , res =" CWRES ", type ="ps", subtitle =" -2LL: @ofv ")
  res_vs_pred (xp , res =" CWRES ", type ="ps", subtitle =" -2LL: @ofv ")

Vignette_RsNLME_TwoCmptCWRESvsIndPopPred.png 


Last modified date:12/17/20
Certara USA, Inc.
Legal Notice | Contact Certara
© 2020 Certara USA, Inc. All rights reserved.