Computational details

Let:

Yijkt be the response of subject j in sequence i at time t with treatment k.

Phoenix_UserDocs_Bioequivalence_Object_image3273 be a vector of responses for subject j in sequence i. The components of Y are arranged in the ascending order of time.

Phoenix_UserDocs_Bioequivalence_Object_image3275.be the design vector of treatment T in sequence i.

Phoenix_UserDocs_Bioequivalence_Object_image3277 be a design vector for treatment R in sequence i.

ni > 1 be the number of subjects in sequence i.

Assume the mean responses of Phoenix_UserDocs_Bioequivalence_Object_image3279, follow a linear model:

Phoenix_UserDocs_Bioequivalence_Object_image3281

where mT, mR are the population mean responses of Y with treatments T and R respectively, and Xi are design/model matrices.

Let:

Phoenix_UserDocs_Bioequivalence_Object_image3283

be the number of occasions T is assigned to the subjects in sequence i.

Phoenix_UserDocs_Bioequivalence_Object_image3285

be the number of occasions R is assigned to the subjects in sequence i.

Then:

Phoenix_UserDocs_Bioequivalence_Object_image3287

Assume that the covariances:

Phoenix_UserDocs_Bioequivalence_Object_image3289

follow the model:

Phoenix_UserDocs_Bioequivalence_Object_image3291

where the parameters:

Phoenix_UserDocs_Bioequivalence_Object_image3293

are defined as follows:

Phoenix_UserDocs_Bioequivalence_Object_image3295

intra-subject correlation coefficients are:

Phoenix_UserDocs_Bioequivalence_Object_image3297

intra-subject covariances are:

Phoenix_UserDocs_Bioequivalence_Object_image3299

intra-subject variances are:

Phoenix_UserDocs_Bioequivalence_Object_image3301

For PBE and IBE investigations, it is useful to define additional parameters:

Phoenix_UserDocs_Bioequivalence_Object_image3303

Except for sD*, all the quantities above are non-negative when they exist. It satisfies the equation:

Phoenix_UserDocs_Bioequivalence_Object_image3305

In general, this sD* may be negative. This method for PBE/IBE is based on the multivariate model. This method is applicable to a variety of higher-order two-treatment crossover designs including TR/RT/TT/RR (the Balaam Design), TRT/RTR, or TxRR/xRTT/RTxx/TRxx/xTRR/RxTT (Table 5.7 of Jones and Kenward, page 205).

Given the ith sequence, let:

Phoenix_UserDocs_Bioequivalence_Object_image3307

where:

Phoenix_UserDocs_Bioequivalence_Object_image3309 is the sample mean of the ith sequence.

Vi is the within-sequence sample covariance matrix.

It can be shown that:

Phoenix_UserDocs_Bioequivalence_Object_image3311

Furthermore, it can be shown that {SiT, SiR} (for PBE) are statistically independent from {D} and {SiWT, SiWR}, and that the four statistics D, SiI, SiWT, SiWR (for IBE) are statistically independent.

Let ai be sets of normalized weights, chosen to yield the method of moments estimates of the h. Then define the estimators of the components of the linearized criterion by:

Phoenix_UserDocs_Bioequivalence_Object_image3313

Phoenix_UserDocs_Bioequivalence_Object_image3315

Phoenix_UserDocs_Bioequivalence_Object_image3317

Phoenix_UserDocs_Bioequivalence_Object_image3319

Using the above notation, one may define unbiased moment estimators for the PBE criteria:

Phoenix_UserDocs_Bioequivalence_Object_image3321

and for the IBE criteria:

Phoenix_UserDocs_Bioequivalence_Object_image3323

Construct a 95% upper bound for h based on the TRTR/RTRT design using Howe’s approximation I and a modification proposed by Hyslop, Hsuan and Holder (2000). This can be generalized to compute the following sets of nq, H, and U statistics:

Phoenix_UserDocs_Bioequivalence_Object_image3325

where the degrees of freedom nq are computed using Satterthwaite’s approximation. Then, the 95% upper bound for each h is:

Phoenix_UserDocs_Bioequivalence_Object_image3327

If Hq < 0, that indicates bioequivalence; Hq > 0 fails to show bioequivalence.


Legal Notice | Contact Certara
© Certara USA, Inc. All rights reserved.