Results

Select the Results tab to view the output. IVIVC object output includes worksheets, plots, and text files. The lists of output in this section are grouped into tables based on the process by which they are generated.

Build correlation process output

Deconvolve data process output

Deconvolve process output

Output for the fit dissolution step of Prediction

Output for InVitro stage of analysis

Output for Levy plot results of Percent absorbed vs percent dissolved

UIR Modeling output for InVivo stage

Predict PK process output

Validate correlation process output

Settings are not recorded on the History tab upon execution. However, they can be found in the indi­vidual Settings text output files for the different steps.

Note:Word Export is not recommended for IVIVC as the export would include all internal/hidden steps whose results are not readily discernible to the user.

Build correlation process output

Worksheet Name

Description

Correlation.Abs vs Diss data

Fraction Absorbed vs Dissolved Data

Correlation.Correlation Overlay data

Fraction Absorbed vs Dissolved Overlay Data

Correlation.Correlation.Condition Numbers

Correlation Modeling Results

Correlation.Correlation.Correlation Matrix

Correlation.Correlation.Diagnostics

Correlation.Correlation.Differential Equations

Correlation.Correlation.Dosing Used

Correlation.Correlation.Eigenvalues

Correlation.Correlation.Final Parameters

Correlation.Correlation.Final Parameters Pivoted

Correlation.Correlation.Initial Estimates

Correlation.Correlation.Minimization Process

Correlation.Correlation.Partial Derivatives

Correlation.Correlation.Predicted Data

Correlation.Correlation.Secondary Parameters

Correlation.Correlation.Secondary Parameters Pivoted

Correlation.Correlation.Stacked Partial Deriva­tives

Correlation.Correlation.Summary Table

Correlation.Correlation.User Defined Settings

Correlation.Correlation.VarianceCovariance Matrix

Correlation.Model Sim Vitro

Correlation Modeling Simulated Vitro Input

Correlation.Model Sim Vivo

Correlation Modeling Simulated Vivo Input

Correlation.Vitro Vivo Times

Used for in generating the Fraction Absorbed vs Dissolved plot.
The tVitro added to Fa-Avg is based on the correlation function, all columns are removed except for formulation, tVivo, tVitro, and Mean

Plot Name

Description

Correlation.Abs vs Diss Corr Overlay

Fraction Absorbed vs Dissolved with Cor­relation Overlay data.
This plot is generated for built-in models, but not for user models.

Correlation.Correlation.Observed Y and Pre­dicted Y vs X

Correlation Modeling Results

Correlation.Correlation.Partial Derivatives Plot

Correlation.Correlation.Predicted Y vs X

Correlation.Correlation.Weighted Residual Y vs X

Text File Name

Description

Correlation.Correlation.Core output

Correlation Modeling Results

Correlation.Correlation.Settings

Deconvolve data process output

Worksheet Name

Description

Deconvolution Input

Input to the deconvolution step

Deconvolve process output

Worksheet Name

Description

Vivo.Deconvolution.Dosing

Deconvolution modeling output for InVivo stage of analysis

Vivo.Deconvolution.Exponential Terms

Vivo.Deconvolution.Fa-avg

Fa-Avg plot data

Vivo.Deconvolution.Fitted Values

Deconvolution modeling output for InVivo stage of analysis

Vivo.Deconvolution.Parameters

Vivo.Deconvolution.Values

Plot Name

Description

Vivo.Deconvolution.Fa-Av
The plot is not created if the Data already deconvolved and averaged option is selected, or if no sort variables are selected in the In-Vivo tab.

Fa-Avg overlaid.
Average fraction absorbed by formula­tion.
For the chart, Fabs grouped by subject with Fabs_avg overlaid and sorted by for­mulation

Vivo.Deconvolution.Fa-Av By Profile
The plot is not created if the Data already deconvolved and averaged option is selected, or if no sort variables are selected in the In-Vivo tab.

Fa-Avg plot by profile
Fabs grouped by formulation, vs. time, and sorted by profile

Vivo.Deconvolution.Fitted Curves Plot

Deconvolution modeling output for InVivo stage of analysis

Vivo.Deconvolution.Input Rates Plot

Text File Name

Description

Vivo.Deconvolution.Fa-avg

Descriptive Stats settings for Fa-Avg

Vivo.Deconvolution.Settings

Deconvolution modeling output for InVivo stage of analysis

Output for the fit dissolution step of Prediction

Worksheet Name

Plot Name

Prediction.Diss.Condition Numbers

Prediction.Diss.Observed Y and Predicted Y vs X

Prediction.Diss.Correlation Matrix

Prediction.Diss.Partial Derivatives Plot

Prediction.Diss.Diagnostics

Prediction.Diss.Predicted Y vs Observed Y

Prediction.Diss.Differential Equations

Prediction.Diss.Predicted Y vs X

Prediction.Diss.Eigenvalues

Prediction.Diss.Residual Y vs Predicted Y

Prediction.Diss.Final Parameters

Prediction.Diss.Residual Y vs X

Prediction.Diss.Final Parameters Pivoted

Text File Name

Prediction.Diss.Initial Estimates

Prediction.Diss.Core output

Prediction.Diss.Minimization Process

Prediction.Diss.Settings

Prediction.Diss.Partial Derivatives

 

Prediction.Diss.Predicted Data

Prediction.Diss.Secondary Parameters

Prediction.Diss.Secondary Parameters Pivoted

Prediction.Diss.Stacked Partial Derivatives

Prediction.Diss.Summary Table

Prediction.Diss.User Defined Settings

Prediction.Diss.VarianceCovariance Matrix

Output for InVitro stage of analysis

Worksheet Name

Plot Name

Vitro.Dissolution.Condition Numbers

Vitro.Dissolution.Observed Y and Predicted Y vs X

Vitro.Dissolution.Correlation Matrix

Vitro.Dissolution.Partial Derivatives Plot

Vitro.Dissolution.Diagnostics

Vitro.Dissolution.Predicted Y vs Observed Y

Vitro.Dissolution.Differential Equations

Vitro.Dissolution.Predicted Y vs X

Vitro.Dissolution.Eigenvalues

Vitro.Dissolution.Residual Y vs Predicted Y

Vitro.Dissolution.Final Parameters

Vitro.Dissolution.Residual Y vs X

Vitro.Dissolution.Final Parameters Pivoted

Vivo.Deconvolution.Cumulative Rates Plot

Vitro.Dissolution.Initial Estimates

Text File Name

Vitro.Dissolution.Minimization Process

Vitro.Dissolution.Core output

Vitro.Dissolution.Partial Derivatives

Vitro.Dissolution.Settings

Vitro.Dissolution.Predicted Data

 

Vitro.Dissolution.Secondary Parameters

Vitro.Dissolution.Secondary Parameters Pivoted

Vitro.Dissolution.Stacked Partial Derivatives

Vitro.Dissolution.Summary Table

Vitro.Dissolution.User Defined Settings

Vitro.Dissolution.VarianceCovariance Matrix

Output for Levy plot results of Percent absorbed vs percent dissolved

Worksheet Name

Plot Name

Levy Plots.%Abs vs %Diss.Levy Plot Values

Levy Plots.%Abs vs %Diss

Levy Plots.%Abs vs %Diss.Parameters

Levy Plots.Fabs vs Fdiss

Levy Plots.Fabs vs Fdiss.Levy Plot Values

 

Levy Plots.Fabs vs Fdiss.Parameters

UIR Modeling output for InVivo stage

Worksheet Name

Plot Name

Vivo.UIR.Condition Numbers

Vivo.UIR.Observed Y and Predicted Y vs X

Vivo.UIR.Correlation Matrix

Vivo.UIR.Partial Derivatives Plot

Vivo.UIR.Diagnostics

Vivo.UIR.Predicted Y vs Observed Y

Vivo.UIR.Differential Equations

Vivo.UIR.Predicted Y vs X

Vivo.UIR.Dosing Used

Vivo.UIR.Residual Y vs Predicted Y

Vivo.UIR.Eigenvalues

Vivo.UIR.Residual Y vs X

Vivo.UIR.Final Parameters

Test File Name

Vivo.UIR.Final Parameters Pivoted

Vivo.UIR.Core output

Vivo.UIR.Initial Estimates

Vivo.UIR.Settings

Vivo.UIR.Minimization Process

Vivo.UIR.Warnings and Errors

Vivo.UIR.Partial Derivatives

 

Vivo.UIR.Predicted Data

Vivo.UIR.Secondary Parameters

Vivo.UIR.Secondary Parameters Pivoted

Vivo.UIR.Stacked Partial Derivatives

Vivo.UIR.Summary Table

Vivo.UIR.User Defined Settings

Vivo.UIR.VarianceCovariance Matrix

Predict PK process output

Worksheet Name

Description

Prediction.Baseline Stats

Observed summary stats used to calcu­late the errors

Prediction.Conv.Results

Simulation Convolution modeling output for Prediction Stage

Prediction.Corr Sim.Condition Numbers

Correlation modeling simulation output for Prediction step

Prediction.Corr Sim.Correlation Matrix

Prediction.Corr Sim.Diagnostics

Prediction.Corr Sim.Differential Equations

Prediction.Corr Sim.Dosing Used

Prediction.Corr Sim.Eigenvalues

Prediction.Corr Sim.Final Parameters

Prediction.Corr Sim.Final Parameters Pivoted

Prediction.Corr Sim.Initial Estimates

Prediction.Corr Sim.Minimization Process

Prediction.Corr Sim.Partial Derivatives

Prediction.Corr Sim.Predicted Data

Prediction.Corr Sim.Secondary Parameters

Prediction.Corr Sim.Secondary Parameters Piv­oted

Prediction.Corr Sim.Stacked Partial Derivatives

Prediction.Corr Sim.Summary Table

Prediction.Corr Sim.User Defined Settings

Prediction.Corr Sim.VarianceCovariance Matrix

Prediction.Model Sim Vitro

Vitro data used for Correlation Simulation

Prediction.Model Sim Vivo

Vivo data used for Correlation Simulation

Prediction.Observed Baseline Nca.Dosing Used

Observed NCA results

Prediction.Observed Baseline Nca.Exclusions

Prediction.Observed Baseline Nca.Final Parame­ters

Prediction.Observed Baseline Nca.Final Parame­ters Pivoted

Prediction.Observed Baseline Nca.Partial Area Labels

Prediction.Observed Baseline Nca.Plot Titles

Prediction.Observed Baseline Nca.Slopes Set­tings

Prediction.Observed Baseline Nca.Summary Table

Prediction.Predicted Nca prediction.Dosing Used

Predicted NCA results

Prediction.Predicted Nca prediction.Exclusions

Prediction.Predicted Nca prediction.Final Param­eters

Prediction.Predicted Nca prediction.Final Param­eters Pivoted

Prediction.Predicted Nca prediction.Partial Area Labels

Prediction.Predicted Nca prediction.Plot Titles

Prediction.Predicted Nca prediction.Slopes Set­tings

Prediction.Predicted Nca prediction.Summary Table

Prediction.Predicted Stats

Predicted summary stats used to calcu­late the errors

Prediction.Prediction Errors

Prediction Errors

Validate correlation process output

Worksheet Name

Description

Validation.Average Vivo.Statistics

Validation summary stats used to calcu­late the errors

Validation.Avg PE Stats

Validation percent error calculations

Validation.Baseline Stats

Observed summary stats used to calcu­late Validation errors

Validation.Conv.Exponential Terms

Simulation Convolution modeling output for Validation Stage

Validation.Conv.Results

Validation.Corr Sim.Condition Numbers

Simulation Correlation modeling output for Validation Stage

Validation.Corr Sim.Correlation Matrix

Validation.Corr Sim.Diagnostics

Validation.Corr Sim.Differential Equations

Validation.Corr Sim.Dosing Used

Validation.Corr Sim.Eigenvalues

Validation.Corr Sim.Final Parameters

Validation.Corr Sim.Final Parameters Pivoted

Validation.Corr Sim.Initial Estimates

Validation.Corr Sim.Minimization Process

Validation.Corr Sim.Partial Derivatives

Validation.Corr Sim.Predicted Data

Validation.Corr Sim.Secondary Parameters

Validation.Corr Sim.Secondary Parameters Piv­oted

Validation.Corr Sim.Stacked Partial Derivatives

Validation.Corr Sim.Summary Table

Validation.Corr Sim.User Defined Settings

Validation.Corr Sim.VarianceCovariance Matrix

Validation.Model Sim Vitro

Correlation model simulation Vitro input for Validation Stage

Validation.Model Sim Vivo

Validation.Observed Baseline Nca.Dosing Used

Observed NCA analysis for Validation Stage

Validation.Observed Baseline Nca.Exclusions

Validation.Observed Baseline Nca.Final Parame­ters

Validation.Observed Baseline Nca.Final Parame­ters Pivoted

Validation.Observed Baseline Nca.Partial Area Labels

Validation.Observed Baseline Nca.Plot Titles

Validation.Observed Baseline Nca.Slopes Set­tings

Validation.Observed Baseline Nca.Summary Table

Validation.Predicted PK Nca.Dosing Used

Predicted NCA analysis for Validation Stage

Validation.Predicted PK Nca.Exclusions

Validation.Predicted PK Nca.Final Parameters

Validation.Predicted PK Nca.Final Parameters Pivoted

Validation.Predicted PK Nca.Partial Area Labels

Validation.Predicted PK Nca.Plot Titles

Validation.Predicted PK Nca.Slopes Settings

Validation.Predicted PK Nca.Summary Table

Validation.Predicted Stats

Predicted summary stats used to calcu­late Validation errors

Validation.Validation Errors

Validation Errors

Plot Name

Description

Validation.Corr Sim.Observed Y and Predicted Y vs X

Simulation Correlation modeling output for Validation Stage

Validation.Corr Sim.Partial Derivatives Plot

Validation.Corr Sim.Predicted Y vs X

Validation.Corr Sim.Weighted Residual Y vs X

Validation.Observed Baseline Nca.Observed Y and Predicted Y vs X

Observed NCA analysis for Validation Stage

Validation.Predicted PK Nca.Observed Y and Predicted Y vs X

Predicted NCA analysis for Validation Stage

Validation.Val Conv Out

Convolution results for simulation part of Validation

Text File Name

Description

Validation.Baseline Stats

Observed summary stats settings used to calculate Validation errors

Validation.Conv.Settings

Simulation Convolution modeling output for Validation Stage

Validation.Corr Sim.Core output

Simulation Correlation modeling output for Validation Stage

Validation.Corr Sim.Settings

Validation.IVIVC.Validation

Settings for the filter prior to generation of Validation Errors

Validation.Observed Baseline Nca.Core output

Observed NCA analysis for Validation Stage

Validation.Observed Baseline Nca.Settings

Validation.Predicted PK Nca.Core output

Predicted NCA analysis for Validation Stage

Validation.Predicted PK Nca.Settings

Validation.Settings

Validation settings

Sigmoidal and Dissolution models

Model 601 — Hill

mdllib_ivivc_hill.png 

y(t)=(Finf * tb)/(MDTb+tb)

Example graph and equation for model 601 — Hill

where the estimated parameters are:

Finf: amount released at time infinity, using the preferred units for y 

MDT: mean dissolution time, in the preferred units for x (time)

b: slope factor (no units)

int: y-intersect; zero (default) or first positive y value in data if estimated, with bounds of zero and 10 times that value

This model includes an optional lag time in the form of a step function, i.e.:

y(t)=(Finf *U(t – tlag)b)/(MDTb+U(t – tlag)b)

(1)

where U(x)=x if x >= 0; U(x)=0 if x < 0.

Model 602 — Weibull

mdllib_ivivc_weib.png 

y(t)=Finf (1 – exp[–(t/MDT)b])

Example graph and equation for model 602 — Weibull

where the estimated parameters are:

Finf: amount released at time infinity, using the preferred units for y 

MDT: mean dissolution time, in the preferred units of x (time)

b: slope factor (no units)

int: y-intersect; zero (default) or first positive y value in data if estimated, with bounds of zero and 10 times that value

This model includes an optional lag time in the form of a step function, i.e.:

y(t)=Finf (1 – exp[–(U(t – tlag)/MDT)b])

(2)

where U(x)=x if x >= 0; U(x)=0 if x < 0.

Model 603 — Double Weibull

mdllib_ivivc_dlbweib.png 

y(t)=f1 * Finf (1 – exp[(–t/MDT1)b1])

          +(1 – f1) * Finf (1 – exp[(–t/MDT2)b2])

Example graph and equation for model 603 — Double Weibull

where the estimated parameters are:

f1: weighting factor, setting the fraction due to each Weibull (no units)

Finf: amount released at time infinity, using the preferred units for y 

MDT1, MDT2: mean dissolution time for each Weibull, (x units)

b1, b2: slope factors (no units)

int: y-intersect; zero (default) or first positive y value in data if estimated, with bounds of zero and 10 times that value

This model includes an optional lag time in the form of a step function, i.e.:

y(t)=f1 * Finf (1 – exp[–(U(t – tlag)/MDT1)b1])

           +(1 – f1) * Finf (1 – exp[–(U(t – tlag)/MDT2)b2])

(3)

where U(x)=x if x >= 0; U(x)=0 if x < 0.

Model 604 — Makoid-Banakar

mdllib_ivivc_makoid.png 

y(t)=Fmax * (t/Tmax)b * exp[b * (1 – t/Tmax)],
for t <= Tmax 

y(t)=Fmax, for t > Tmax 

Example graph and equation for model 604 — Makoid-Banakar

where the estimated parameters are:

Fmax: maximum y value, using the preferred units for y 

Tmax: time of maximum y value, using the preferred units for x (time)

b: slope factor (no units)

int: y-intersect; zero (default) or first positive y value in data if estimated, with bounds of zero and 10 times that value

This model includes an optional lag time in the form of a step function, i.e.:

y(t)=Fmax * [U(t – tlag)/Tmax]b * exp[b * (1 – U(t – tlag)/Tmax)]

(4)

where U(x)=x if x >= 0; U(x)=0 if x < 0.

Note:The FMAX parameter can be fixed at a certain value by doing one of the following:
– Set the initial estimates option to User-Supplied Initial Parameter Values, and then set initial estimates for any estimated parameters. 
– Create a worksheet and use it as an external worksheet for the initial estimates. 

ASCII user model for correlations

A custom model for an IVIVC correlation needs to include only the parameter definitions and model equations. No other statements are required.

IVINTERP(): This function is used to interpolate dissolution data. A common usage is for X to be the in vivo time, and X is then scaled or shifted by model parameters to yield an in vitro time, which is called T. IVINTERP is then used to interpolate the dissolution data to find the dissolution at time T. The first and last values in the dissolution data are used when T is respectively before or after the time range of the dissolution data.

DOSEVIVO: This variable contains the dose amount for each formulation. The wizard will translate this variable into the DTA array that is part of the WNL modeling language.

Data deficiencies resulting in missing values for PK parameters

Phoenix reports missing values for PK parameters in the following cases.

Cases when missing PK parameter values are reported

Profile issue(s)

Parameters reported as missing

Profile with no non-missing observations after dose time.

All final parameters

Bolus dosing and <=1 non-missing observation after dose time.

All final parameters

Blood/plasma data with no non-zero observa­tion values.

All final parameters except:
Cmax, AUClast, AUCall, AUMClast

Blood/plasma data with all zero values except one non-zero value at dosing time

All final parameters


Last modified date:6/26/19
Certara USA, Inc.
Legal Notice | Contact Certara
© 2019 Certara USA, Inc. All rights reserved.